HL Paper 3

Let c be a positive, real constant. Let G be the set $\{x \in \mathbb{R} | -c < x < c\}$. The binary operation * is defined on the set G by $x * y = \frac{x+y}{1+\frac{xy}{c^2}}$.

a.	Simplify $\frac{c}{2} * \frac{3c}{4}$.	[2]
b.	State the identity element for G under $*$.	[1]
c.	For $x \in G$ find an expression for x^{-1} (the inverse of x under *).	[1]
d.	Show that the binary operation $*$ is commutative on G .	[2]
e.	Show that the binary operation $*$ is associative on G .	[4]
f.	(i) If $x, y \in G$ explain why $(c-x)(c-y) > 0$.	[2]
	(ii) Hence show that $x + y < c + \frac{xy}{c}$.	
g.	Show that G is closed under $*$.	[2]
h.	Explain why $\{G, *\}$ is an Abelian group.	[2]

[1]

[5]

[3]

A random variable \boldsymbol{X} has probability density function

$$f(x) = \left\{egin{array}{ccc} 0 & x < 0 \ rac{1}{2} & 0 \leq x < 1 \ rac{1}{4} & 1 \leq x < 3 \ 0 & x \geq 3 \end{array}
ight.$$

- a. Sketch the graph of y = f(x).
- b. Find the cumulative distribution function for X.
- c. Find the interquartile range for X.